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Abstract 
One major aim of railway operations research is to identify bottlenecks in the 
infrastructure. In the past, lines were analysed in detail but junctions were often neglected 
because of their complexity. The consequences become evident at the “ends” of various 
European high-speed projects. For the purpose of assessing capacity, junctions can be split 
into route nodes and sets of station tracks. Route nodes contain the switching zones in the 
throats of stations, linking the adjacent lines and/or station tracks. They allow several train 
moves to be performed simultaneously as long as these do not conflict in whole or part.  

Besides simulation approaches, recourse is also had when assessing the capacity of 
railway infrastructure to analytical methods based on queueing theory. These analytical 
methods establish a correlation between the level of utilisation of infrastructure and 
resultant performance parameters such as waiting times or waiting probabilities. 

Analytical methods can even be adopted without access to a specific timetable. It is 
sufficient to know the quantities of each different type of train involved, the train mix 
being calculated stochastically. Calculations take account of the minimum headway times 
between train moves. Analytical models are used for long-term or strategic network 
planning. There is usually no detailed timetable available for such long planning horizons, 
just a certain amount of general information on the intended transport schedule. Another 
advantage of analytical approaches is that computing times are fast. 

Analytical methods of calculating the capacity of lines and station tracks are already 
very widespread and have been incorporated into a number of software tools. 
Approximative solutions have provided the sole means of assessing route nodes hitherto, 
however.  

This paper describes an algorithm for calculating the waiting and loss probabilities for 
a route node. The approach adopted uses a multi-resource queue to model a route node, an 
area of track over which two or even more train moves can, after all, be performed 
simultaneously. First, the system’s basic characteristics are described. An equation for 
calculating the exact loss probability of the system is then extrapolated before conducting 
an approximation exercise to deduce waiting probabilities. The system’s capacity is 
arrived at by comparing the waiting probabilities calculated with an acceptable “level of 
service”. 
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1 Introduction 

Economical running of the railway system is predicated upon track facilities being 
correctly dimensioned. The high level of investment, long planning periods and long 
service lives associated with such track facilities mean that any change in the way they 
impact on performance capacity as well as in their own performance patterns needs to be 
studied and assessed. The performance capacity of track facilities depends not only on the 
infrastructure available but also on the loading to which they are subjected in the form of 
the transport schedule being put to effect and the quality of conveyance and transportation 
underpinning it. 

Dimensioning railway infrastructure generally involves dividing it up into lines and 
nodes. Whereas a number of procedures for calculating the performance capacity of lines 
have established themselves in recent years [15], [2], only tentative methods of 
determining the capacity of nodes are as yet available [17], despite the fact that railway 
nodes are often where congestion actually occurs [19]. The primary reason for this is that 
nodes are considerably more complex in nature than lines and are more difficult to model. 
As well as comprising a set of station tracks, for instance, a node also includes the 
switching zones in station throats, known as route nodes. Route nodes link the adjoining 
lines with the set of station tracks. Figure 1 shows in schematic form the division of a 
node into route nodes and a set of station tracks. 

 

Figure 1: Modelling railway nodes with route nodes (RN) and a set of station tracks (ST) 
 

The present paper sets out a method of determining the performance capacity of route 
nodes. Progress to date is detailed in Section 2, in which attention is also given to a 
variety of methods of determining node capacity. Sections 3 and 4 draw on [10] and 
describe the modelling of a route node as a multi-resource queue. An equation for the 
exact computation of loss probabilities in route nodes is extrapolated. As a means of 
determining performance capacity, the following Section 5 sets out a method whereby 
waiting probabilities can be approximatively determined. By way of conclusion, the 
equations elucidated are applied in a sample computation in Section 6. 
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2 Progress to Date 

Determining the capacity of railway facilities constitutes a key challenge for railway 
operations research. Further factors impacting on capacity besides the infrastructure being 
dimensioned are the transport schedule under review and the accepted level of quality. A 
track facility’s capacity is essentially the number of service enquiries that can be 
processed to an accepted level of quality within the period under review. 

This loading-based level of quality can be defined in a number of ways. The first 
involves a set of parameters used to rate the timetable that are solely dependent on the rate 
of utilisation, one example being occupation ratio ρ. Further quality requirements serve to 
rate traffic quality on the basis, for instance, of levels of punctuality. Use is also made in 
railway operations research of waiting times or waiting probabilities as levels of quality, 
to conclude. It is possible to establish waiting times and waiting probabilities both for the 
compilation of timetables (scheduled waiting times) and for the operation of trains 
(unscheduled waiting times) [18]. All of the parameters referred to reveal a correlation 
between quality and a track facility’s rate of utilisation: any increase in the rate of 
utilisation induces changes in the quality indicator. 

A track facility’s theoretical performance capacity, its performance limit, is attained 
once the system continuously receives more service enquiries than it can deal with. This is 
a scenario that would give rise to an infinite queue. Theoretical performance capacity is 
merely a parameter with which to describe the system and is not suitable for practical 
capacity quantification exercises. Reference is made to [11] where determining the 
performance limit for route nodes is concerned. Figure 2 illustrates the correlation 
between a track facility’s rate of utilisation and its ‘occupation ratio’ and ‘traffic quality’ 
parameters based on levels of punctuality and waiting times. 
 

 

Figure 2: Correlation between rate-of-utilisation and quality parameters 
 

It is the practical potential for performance that is of interest when establishing capacity. 
This is arrived at by stipulating a specific level of service, an operation that involves 
defining either an admissible occupation ratio as the implicit level of service or an 
admissible waiting time as the explicit level of service. It is then possible to determine the 
admissible rate of utilisation for this stipulated level of quality by computing the rate of 
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utilisation that would be achieved at this level of service. 
Figure 3 portrays the correlation between a track facility’s rate of utilisation and the 

ensuing waiting times. If the level of service is specified as being an admissible waiting 
time, it can be concluded that the facility’s capacity is the optimum number of trains nopt. 
It is thus plain to see that capacity is a variable entity. It is also technically feasible to 
process more than the optimum number of trains, though this is likely to lead to a drop in 
quality. 

 

 

Figure 3: Determining the optimum number of trains for a predefined level of service 
 

The two following sections contain an elucidation of the methods adopted to determine 
node capacity (Subsection 2.1) as well as a discussion of the “levels of service” employed 
as rating benchmarks (Subsection 2.2). 

2.1 Methods of determining node capacity 

The multifarious interactions between, and wider network impact of, railway nodes mean 
they are often complex structures that are awkward to analyse. It is usual, therefore, to 
divide a node up into a set of station tracks and the accompanying route nodes. Route 
nodes are notably distinguished by the fact that, unlike on open line track, it is sometimes 
possible - depending on how the routes are set - for several train moves to negotiate them 
in tandem. There are a variety of means of rating and quantifying the capacity of nodes in 
railway operations research. 

One method involves recreating traffic patterns at a railway node in as realistic a 
manner as possible. Tools that allow the operation of trains to be simulated are a suitable 
means of achieving this. Forming their point of departure are a microscopic infrastructure 
model and the train moves in an archived timetable. In the course of conducting a large 
number of Monte-Carlo simulation runs, disruptions are introduced into the timetable that 
may lead to (knock-on) conflicts, and altered running slots as a result, during the 
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simulation exercise. When evaluating such multiple simulation runs, attention focuses on 
deviations from the original timetable. These generally concern operating parameters such 
as levels of punctuality or increases/decreases in delays. One microscopic simulation tool 
currently in use, for instance, is the LUKS® method [6]. 

Alongside generically generated simulation data, use can also be made of actual 
operating data for analysis and evaluation purposes. This approach is particularly suitable 
when evaluating the stability of the actual timetable. Diverse means of evaluating and 
analysing operating data are detailed in [5]. 

Another potential procedure is to consider capacity with the aid of “compilatory 
methods”, i.e. by determining the capacity consumed under the timetable. The method 
most commonly adopted involves compressing a timetable pursuant to UIC Code 406 
[15]. UIC Code 406 draws on the concatenation method devised by ADLER [1] in which 
timetabled train-paths (stepped blocking-time series) are pushed as close together as 
possible. UIC Code 406 addresses itself to the concatenation of sections of line; 
extensions of its scope to embrace the calculation of node capacity are the subject of 
ongoing discussion in the relevant specialist literature [8], [9] and are currently being 
elaborated by the UIC [17]. 

An admissible occupation ratio is used as the quality benchmark under the 
concatenation method. Guideline figures arrived at with reference to selected illustrative 
lines adopting the analytical methods set out below are given in UIC Code 406 [20].  

Analytical methods of establishing capacity also exist, furthermore. Under these, an 
equation-style correlation is established between the track facility’s rate of utilisation and 
the ensuing parameter - primarily waiting probabilities/waiting times. These methods 
draw on the queueing theory, under which customer demands are processed in single or 
multiple-channel queueing systems. More detailed information on the queueing theory for 
railways is contained in [18]. One particular advantage of the analytical approach is that 
no actual timetable is required as an input variable as with other methods, general 
information on the transport schedule in the form of the train mix being sufficient. 
Analytical methods are most notably adopted in strategic network planning where there is 
as yet no timetable with which to assess future capacity quantification requirements. The 
computing times involved with analytical methods are far shorter than for simulation 
exercises, moreover. 

A method originated by HERTEL [7] exists for quantifying the capacity of station 
tracks in railway nodes by analytical means. Approximative approaches devised by 
POTTHOFF [13] and OETTING [12] are available for route nodes. An exact specification of 
loss probabilities for route nodes is set out in [10]. The following sections of the present 
paper set out how waiting probabilities for a route node can be determined on the basis of 
loss probabilities. 

2.2 Quality benchmark as “level of service” 

The methods now adopted for capacity studies operate with various types of quality 
benchmark. Simulation exercises or service-data evaluations are performed to analyse 
parameters such as punctuality at selected cross-sections or increases/decreases in delays. 
There is no uniform application or directive for defining such quality benchmarks. 

The method specified in UIC Code 406 merely gauges a track facility’s rate of 
utilisation on the basis of its occupation ratio. The timetable structure is factored in but no 
consideration is given to features such as the rankings (priorities) of train moves or to 
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delay parameters. UIC Code 406 enumerates uniform limit values for defining a quality 
benchmark on the basis of admissible levels of occupation [15]. 

Analytical methods can be adopted to establish both scheduled and unscheduled 
waiting times and probabilities. Use is specifically made of the admissible quality 
parameters in Germany and they are incorporated into directives issued by DB Netz AG 
for this reason [3]. 

All the methods mentioned give sole consideration to train running factors, whereas 
more recent research work additionally addresses economic aspects. To this end the 
outgoings and earnings of railway infrastructure managers and train operating companies 
are calculated and compared as a function of a given track facility’s rate of utilisation. The 
optimum range from an economic point of view is deemed to be that within which a rate 
of utilisation yielding the greatest possible profit (or lowest possible loss) is achieved. 
Reference is made to [14] for more detailed information on economically optimum 
numbers of trains. 
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3 Modelling a Route Node as a Multi-Resource Queue 

This Section contains a formal description of how a route node is modelled, and how 
differing train moves (customer types) are served, for subsequent computation. A route 
node is made up of a total of s queueing channels. There can be no more than one 
customer in any one queueing channel. A queueing channel thus corresponds to a 
sectional route node for the purposes of railway operations research [16]. Figure 4 
illustrates the queueing channels (sectional route nodes) into which a route node at a 
station throat is divided. In the example shown, the route node to the left of the set of 
station tracks is divided into seven queueing channels, which are colour-highlighted. 
 

 

Figure 4: Queueing channels in a route node 
 

The queueing channels are numbered consecutively as r = 1…s. The quantity of queueing 
channels is taken as being R. The capacity vector c of the system is 

 
( )sr21 ,...,c,...,c,cc=c  (1)

 
where rcr   1∀= . (2)

There are a total of g different customer types occupying one or more channels in the 
route node. Customer types are designated as j = 1...g and differ owing to their differing 
channel requirements. Let the arrival rate of customers of customer type j be λj. This is 
obtained by dividing the number of incoming customers nj of customer type j by period of 
time tU. 

 U

j
j t

n
=λ  (3)

Let the total number of all customers arriving in period of time tU be ntot. 
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It is assumed that the intermediate arrival times of a stream of demands are statistically 
independent and of identical distribution. The overall arrival rate of all customers λ is the 
total number of all customers divided by the period under review. It can alternatively be 
established using the sum of the arrival rates of the individual customers. 

 

 ∑
=

λ==λ
g

j
j

U

tot

t

n

1

 (5)

Occupation matrix ∆ denotes channels occupied by a customer. The occupation matrix is a 
Boolean matrix measuring g by s. 

 

 
( )jrδ=∆∆∆∆  (6)

 



=δ
otherwise.0

, channel occupies customer  if1 rj
jr  (7)

Row j in the occupation matrix details requirement δδδδj• of customer j. 
 

 
( )jsjrjjj δδδδ=• ,...,,...,, 21δ  (8)

Any instance of occupation by a customer begins simultaneously for all channels required. 
Once customer j has been served at service rate µj, all occupied channels are re-cleared at 
the same time. This means any route that has been set is completely cancelled. It is 
assumed that service times are statistically independent of one another and identically 
distributed. 
Conflict matrix A is a Boolean matrix measuring g by g. It denotes whether two customers 
can be served simultaneously or whether they give rise to a conflict in the route node. Let 

 

 
( )ija=A  (9)

where 
 





=
otherwise.0

 together,channel oneleast at occupy   and  customers if1 ji
aij  (10)

The conflict matrix can be calculated for the customers’ requirements δδδδj• as follows: 
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{ },1 min T

ji •• ⋅= δδija . (11)

The service rate of a customer µj is the inverse of the latter’s mean service time. The 
occupation ratio ρj of a customer j is defined as being the ratio of the latter’s arrival and 
service rate.  

 j

j
j µ

λ
=ρ  (12)

At any given time the system is either empty or else at least one customer is being served. 
Whether several customers can be served at the same time depends on their requirements 
δδδδj•. It is possible with the aid of customer combinations k to describe the system’s 
statuses. A customer combination is possible if all customers forming part of the 
combination can be served at the same time. Let the number of all possible customer 
combinations with at least one customer be m. The trivial scenario in which there is no 
customer in the system is defined as k0. Combinations are numbered consecutively as 
l = 0...m. Combination kl states which customers occur in combination l. A combination is 
described in the form of 

 

 
( )gljl2l1ll ,...,k,...,k,kk=k  (13)

where 

 



=
otherwise.0

customer, one involves n combinatio if1 l
k jl  (14)

The trivial combination arises when 
 

 
....1  00 gjk j =∀=  (15)

It holds that combination kl is a possible combination at the precise moment when 
 

 
c∆k ≤⋅l . (16)

Let the number of all possible combinations be Ψ: 
 

 
( )ml ,...,...,,, kkkkk ,Ψ 210=  (17)

Combination kl may occupy one or more channels in the system. Combined occupation 
matrix ΓΓΓΓ denotes the channels occupied given combinations kl. ΓΓΓΓ is an m-by-s matrix. 

 

 
( )lrγ=ΓΓΓΓ  (18)
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 



=γ
otherwise.0

,n combinatiogiven  occupied is  channel if1 lr
lr  (19)

 jr

g

j
jllr k δ⋅=γ ∑

=1

 (20)

Quantity Ψ is now allocated as a function of an incoming customer j. Let quantity Ωj ⊂ Ψ 
be the quantity of combinations in which an incoming customer j can immediately be 
served; i.e. assuming that all channels required by customer j are available. The elements 
in Ωj can be characterised as follows:  

 

 
1Ω ≤γ+δ⇔∈ lrjrjlk
  

where r = 1...s. (21)

Let the complementary quantity for Ωj be Φj, i.e. 
 

 
ΨΦ ⊂j  (22)

and 

 
ΨΦΩ =∪ jj . (23)

Quantity Φj contains all combinations in which an incoming customer j cannot be served 
owing to at least one required channel being occupied. It follows from the characterisation 
of Φj that 

 

 1Φ >γ+δ⇔∈ lrjrjlk  for at least one channel r. (24)

 
The system’s stationary status Π can be described in terms of status probabilities. There is 
a certain probability πl that the system will be in the status of combination l. The 
probability of there being no customer in the system is denoted by means of π0. 

 

 
{ }ml πππππ= ,...,,...,,,Π 210  (25)

In respect of status probabilities, it holds that 
 

 
10 ≤π≤ l  (26)

and 

 
1

0

=π∑
=

m

l
l . (27)
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4 Calculating Loss Probabilities in a Route Node 

DZIONG and ROBERTS [4] set forth an algorithm that enables the loss probabilities for a 
multi-resource queue to be determined. 
Establishing loss probabilities pV first involves determining status probabilities πl for the 
stationary status. It holds for each combination kl that: 

 

 ∏
=

ρ⋅π=π
g

j

k
jl

jl

1
0  (28)

In the following operation on the normalising condition (27) 
 

1
0

=π∑
=

m

l
l , 

first the initial addend is written out 
 

 
1

1
0 =π+π ∑

=

m

l
l  (29)

and then equation (28) is inserted 
 

 
1

1 1
00 =














ρ⋅π+π ∑ ∏

= =

m

l

g

j

k
j

jl . (30)

A process of conversion yields 
 

 ∑∏
= =

ρ+
=π

m

l

g

j

k
j

jl

1 1

0

1

1
. 

(31)

Since it holds for combinations kj0 that 
 

 
1

1

0 =ρ∏
=

g

j

k
j

j , (32)
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it is possible to reduce equation (31) to  
 

 ∑∏
= =

ρ
=π

m

l

g

j

k
j

jl

0 1

0

1
. 

(33)

The inverse of π0 can be regarded as constituting normalisation constant G. 

 ∑∏
= =

− ρ=π=
m

l

g

j

k
j

jl

0 1

1
0G  (34)

With status π0 and the normalisation constant having been defined, it is now possible to 
compute all other statuses with the aid of (28). 

 

 
G

1
∏

=

ρ
=π

g

j

k
j

l

jl

 
(35)

The loss probability pV,j of a customer j equals the sum of status probabilities πl in which 
an incoming customer j is not admitted. 

 

 
∑

∈

π=
jll

ljvp
Φ  where

,
k

 (36)

The system’s complexity increases rapidly. This is due to the customer combination 
options, which increase very rapidly in the case of major nodes. A method is accordingly 
set out in [10] whereby the degree of complexity can be lessened without any loss in 
computing accuracy by breaking the overall system up into several subsystems. 
  



 13 

5 Determining Waiting Probabilities in a Route Node 

Railway operations research makes no use of the loss probabilities calculated in the 
previous section, since it generally has queueing systems as opposed to loss systems at its 
disposal. It is therefore necessary to extrapolate waiting probabilities from the loss 
probabilities calculated. POTTHOFF [13] uses the loss probabilities calculated to determine 
the waiting probabilities for a set of station tracks. It is fundamentally the case that loss 
and waiting probabilities are virtually identical for low levels of occupation and only 
begin to diverge significantly given higher levels (cf. Figure 7). 

An approximative solution is adumbrated below that establishes the waiting 
probabilities in a route node on the basis of the applicable loss probabilities. To this end, 
consideration is first given to the loss and waiting probabilities for a single-channel 
queueing system involving random arrival and service times. It holds for loss probability 
pv,1 and waiting probability pw,1 under such a system that: 

 

 µ+λ
λ=1,vp  (37)

 µ
λ=1,wp  (38)

 
Correlating waiting and loss probabilities yields a loading-dependent factor f: 
 

 
ρ+=

µ
µ+λ== 1 

1,

1,

v

w

p

p
f  (39)

If this factor is now also applied to the route node, the following is arrived at as an 
approximative solution for determining waiting times in a route node: 
 

 jvjjw pp ,, )1( ⋅ρ+=  (40)

The loss probabilities for customer type j are accorded a supplementary factor through this 
process of approximation. The quality of approximation depends on the number of further 
customer types involved. The quality of this approximative solution diminishes with each 
further customer interacting with customer type j - i.e. conflicting with it. 
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6 Sample Computation 

Let use be made of the route node comprising 7 queueing channels shown in Figure 4. 
The queueing channels are numbered as follows. 

 

 

Figure 5: Queueing channels one to seven in a route node 
 

A total of five different customer types avail themselves of this queueing system, as 
illustrated in the following Figure. 

 

 

Figure 6: Customer requirements for a route node 
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Occupation matrix ∆∆∆∆ for this queueing system is thus as follows: 
 























=

1000110

0001110

0011100

0101001

0000001

∆∆∆∆  

 
Let the arrival and service rates for customers be: 

 
Cust. type Arrival rate λλλλ Service rate µµµµ 

1 0.06 0.5 
2 0.02 0.4 
3 0.03 0.6 
4 0.04 0.5 
5 0.05 0.3 

Table 1: Arrival rate λ and service rate µ by customer type 
 

The overall arrival rate λ in this example is 
 

20.0
1
∑

=

=λ=λ
g

j
j . 

 
This illustrative example yields the following loss and waiting probabilities for the five 
customer types. 

 
Cust. type Loss probability pv Waiting probability pw 

1 0.1416 0.1586 
2 0.2277 0.2391 
3 0.2586 0.2715 
4 0.2586 0.2793 
5 0.2255 0.2631 

Table 2: Calculation of loss and waiting probabilities 
 

The average values computed across all customers yield a loss probability of 21.21 % and 
a waiting probability of 23.38 %. The loss and waiting probabilities for other rates of 
utilisation are likewise calculated by varying the arrival rates whilst retaining the same 
mixing ratio. In addition, the waiting probabilities established are compared with the 
values from a Monte-Carlo simulation exercise. The results are shown in the following 
Figure. 
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Figure 7: Loss and waiting probabilities for various arrival rates 
 

At low rates of utilisation roughly up to an overall arrival rate λ of 0.2, there is little to 
separate loss and waiting probabilities. The difference becomes more pronounced where 
loadings are greater.  

7 Concluding Summary and Outlook 

Use is made of a variety of rail service research methods when determining node capacity 
these days. An existing timetable is evaluated under the compilatory method, whilst 
simulation and traffic analyses operate with service parameters, and the analytical models 
used in queueing theory establish waiting times or waiting probabilities. The performance 
capacity of a given track facility is gauged with reference to various types of quality 
benchmark under these different methods. 

Analytical models can only provide data on a track facility’s performance capacity 
with reference to an anticipated future transport schedule and, for this reason and owing to 
the short computing times involved, are most suitable for strategic network planning.  

For the purpose of establishing capacity, railway nodes are divided up into a set of 
station tracks and the switching zones constituting a station’s “throats” (route nodes). It is 
possible applying the set of equations contained in this paper to exactly determine the loss 
probabilities for a route node. An approximative means of extrapolating waiting 
probabilities is pointed up. The quality of this approximative solution diminishes as the 
track facility’s level of loading rises. 

Any future refinement of analytical models is dependent upon conclusive research 
being conducted into enhanced means of estimating waiting probabilities, including for 
the heavy-traffic sphere. 

There is a need, to conclude, to additionally apply internationally recognised quality 
benchmarks and a uniform procedure for establishing capacity to railway nodes by, for 
instance, extending the scope of UIC Code 406. 
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